可以使用X射线自由电子激光器的强脉冲和短脉冲直接通过单次相干衍射成像直接观察到自由飞行中孤立的纳米样品的结构和动力学。广角散射图像甚至编码样品的三维形态信息,但是该信息的检索仍然是一个挑战。到目前为止,只有通过与高度约束模型拟合,需要对单镜头实现有效的三维形态重建,这需要有关可能的几何形状的先验知识。在这里,我们提出了一种更通用的成像方法。依赖于允许凸多面体描述的任何样品形态的模型,我们从单个银纳米颗粒中重建广角衍射模式。除了具有高对称性的已知结构动机外,我们还检索了以前无法访问的不完美形状和聚集物。我们的结果为单个纳米颗粒的真实3D结构确定以及最终的超快纳米级动力学的3D电影开辟了新的途径。
translated by 谷歌翻译
背景:基于学习的深度颈部淋巴结水平(HN_LNL)自动纤维与放射疗法研究和临床治疗计划具有很高的相关性,但在学术文献中仍被研究过。方法:使用35个规划CTS的专家划分的队列用于培训NNU-NEN 3D FULLES/2D-ENEBLEN模型,用于自动分片20不同的HN_LNL。验证是在独立的测试集(n = 20)中进行的。在一项完全盲目的评估中,3位临床专家在与专家创建的轮廓的正面比较中对深度学习自动分类的质量进行了评价。对于10个病例的亚组,将观察者内的变异性与深度学习自动分量性能进行了比较。研究了Autocontour与CT片平面方向的一致性对几何精度和专家评级的影响。结果:与专家创建的轮廓相比,对CT SLICE平面调整的深度学习分割的平均盲目专家评级明显好得多(81.0 vs. 79.6,p <0.001),但没有切片平面的深度学习段的评分明显差。专家创建的轮廓(77.2 vs. 79.6,p <0.001)。深度学习分割的几何准确性与观察者内变异性(平均骰子,0.78 vs. 0.77,p = 0.064)的几何准确性无关,并且在提高水平之间的准确性方面差异(p <0.001)。与CT切片平面方向一致性的临床意义未由几何精度指标(骰子,0.78 vs. 0.78 vs. 0.78,p = 0.572)结论:我们表明可以将NNU-NENE-NET 3D-FULLRES/2D-ENEMELBEND用于HN_LNL高度准确的自动限制仅使用有限的培训数据集,该数据集非常适合在研究环境中在HN_LNL的大规模标准化自动限制。几何准确度指标只是盲人专家评级的不完善的替代品。
translated by 谷歌翻译
HyperGraphs为在节点之间建模多路相互作用提供了有效的抽象,每个HyperEdge都可以连接任何数量的节点。与大多数利用统计依赖性的研究不同,我们从因果关系的角度研究了超图。具体而言,在本文中,我们重点介绍了对超图的个人治疗效果(ITE)估计的问题,旨在估算干预措施(例如,佩戴脸部覆盖)将对结果(例如,Covid-19感染)的因果影响(例如,Covid-19感染)影响。每个节点。关于ITE估计的现有作品假设一个人的结果不应受到其他个体的治疗作业的影响(即无干扰),或者假设仅在普通图中的成对相关个体之间存在干扰。我们认为,这些假设对现实世界中的超图可能是不现实的,在现实世界中,高阶干扰可能会影响由于存在组相互作用而导致的最终ITE估计。在这项工作中,我们研究了高阶干扰建模,并提出了一个由HyperGraph神经网络提供支持的新因果学习框架。对现实世界超图的广泛实验验证了我们框架优于现有基线的优势。
translated by 谷歌翻译
从Chaser Spacecraft发射的系绳网提供了有希望的方法,可以在轨道中捕获和处理大型空间碎片。该系绳网络系统受到影响和致动的几种不确定性来源,影响其净爆发和关闭控制的性能。然而,设计控制动作的早期可靠性的优化方法仍然具有挑战性,并计算到相对于追逐者相对于追逐者的不同发射方案和目标(碎片)状态概括。为了搜索一般和可靠的控制策略,本文介绍了一种加强学习框架,它集成了具有净动力学模拟的近端策略优化(PPO2)方法。后者允许评估基于网络的目标捕获的剧集,并估算捕获质量索引,作为PPO2的奖励反馈。在这里,在任何给定的发射方案下,学习的策略旨在根据移动网和目标的状态来模拟网络结束动作的定时。考虑了随机状态转换模型,以便在国家估算和发射致动中纳入合成不确定性。随着培训期间的显着奖励改进,训练有素的策略表明捕获性能(在广泛的发射/目标场景范围内),接近基于可靠性的优化在各个方案上运行。
translated by 谷歌翻译
本文介绍了复数几何形状中变换扩散过程的数值模拟的通用框架。这项工作遵循了在微观尺度下对多孔系统中有机物微生物降解的微生物降解模拟的先前。我们显着地推广并改善了马赛克方法,从而产生了更通用和有效的数值模拟方案。特别地,关于从图中的扩散过程的模拟,在该研究中,我们提出了一种完全明确的半隐式数值方案,可以显着降低计算复杂性。我们通过将结果与经典格子Boltzmann方法(LBM)提供的结果进行比较来验证了我们的方法。对于相同的数据集,我们在比前的工作(几个小时)上的计算时间(即,10-15分钟)中获得了类似的结果。除了经典的LBM方法需要大约3周的计算时间。
translated by 谷歌翻译
归一化流是突出的深层生成模型,提供了易诊的概率分布和有效密度估计。但是,众所周知,在检测到分配(OOD)输入时,它们是众所周知的,因为它们直接在其潜在空间中对输入表示的本地特征进行了编码。在本文中,我们通过演示流动,如果通过注意机制延伸,可以通过表明流动,可以可靠地检测到包括对抗攻击的异常值。我们的方法不需要对培训的异常数据,并通过在多样化的实验设置中报告最先进的性能来展示我们的ood检测方法的效率。代码在https://github.com/computationalradiationphysphysics/inflow上提供。
translated by 谷歌翻译